ScikitLearn: Reducción de la dimensionalidad con PCA

Código
Avanzado
ScikitLearn
Curso de ScikitLearn
20 min
200 XP
Actualizado: 28/02/2025

Ejercicio de programación: Reducción de la dimensionalidad con PCA

Este ejercicio de programación está diseñado para poner a prueba tus conocimientos en ScikitLearn. Es un ejercicio avanzado que pondrá a prueba tus conocimientos expertos.

Tipo: Ejercicio de código 20 minutos estimados 200 puntos de experiencia

Información adicional del ejercicio

Crea un modelo de PCA utilizando Python y Scikit Learn.

Contenido del ejercicio

Usa el conjunto de datos 'Iris' proporcionado por Scikit Learn, que contiene características de diferentes tipos de flores iris, para aplicar el Análisis de Componentes Principales (PCA). El objetivo es reducir la dimensionalidad de los datos de tal manera que puedas visualizar cómo se agrupan los diferentes tipos de iris en un espacio bi-dimensional.

Cargar el conjunto de datos 'Iris': Utiliza load_iris() de Scikit Learn para cargar el dataset.

Estandarizar las características: Antes de aplicar PCA, asegúrate de escalar las características para que todas tengan media 0 y desviación estándar 1.

Aplicar PCA: Reduce las dimensiones de los datos de 4 características a 2 usando PCA. Al ejecutar la transformación, obtén los nuevos valores de las características en el espacio de los componentes principales.

Visualizar los resultados: Genera un gráfico de dispersión (scatter plot) en 2D de tus resultados, etiquetando los puntos según el tipo de flor para ver cómo se agrupan en el espacio reducido.

Lección relacionada

Este ejercicio está relacionado con la lección "Reducción de la dimensionalidad con PCA" de ScikitLearn. Te recomendamos revisar la lección antes de comenzar.

Ver lección relacionada

Más ejercicios de ScikitLearn

Explora más ejercicios de programación en ScikitLearn para mejorar tus habilidades y obtener tu certificación.

Ver más ejercicios de ScikitLearn
Alan Sastre - Autor del ejercicio

Alan Sastre

Ingeniero de Software y formador, CEO en CertiDevs

Ingeniero de software especializado en Full Stack y en Inteligencia Artificial. Como CEO de CertiDevs, ScikitLearn es una de sus áreas de expertise. Con más de 15 años programando, 6K seguidores en LinkedIn y experiencia como formador, Alan se dedica a crear ejercicios prácticos y contenido educativo de calidad para desarrolladores de todos los niveles.

Solución al ejercicio de programación en ScikitLearn

Contenido bloqueado

¡Desbloquea la solución completa!

Completa el ejercicio de programación en ScikitLearn para acceder a la solución paso a paso, explicaciones detalladas y mejores prácticas.

solution.js
JavaScript
1 function solveChallenge ( input ) {
2 // Algoritmo optimizado O(n log n)
3 const data = parseInput ( input );
4 const sorted = data . sort (( a , b ) => a - b );
5
6 // Aplicar técnica de dos punteros
7 let left = 0 , right = sorted . length - 1 ;
8 const result = [];
9
10 while ( left < right ) {
11 const sum = sorted [ left ] + sorted [ right ];
12 if ( sum === target ) {
13 result . push ([ sorted [ left ], sorted [ right ]]);
14 left ++; right --;
15 } else if ( sum < target ) {
16 left ++;
17 } else {
18 right --;
19 }
20 }
21
22 return result ;
23 }
Código completo
Explicaciones
Mejores prácticas
+1.200 developers han resuelto este ejercicio de programación

Practica con ejercicios de programación en ScikitLearn

Mejora tus habilidades con cientos de ejercicios de práctica, recibe retroalimentación instantánea y obtén tu certificación cuando estés listo.

Asistente de IA

Aprende de tus errores

Progreso

Mide tu avance

Certificación

Valida tus habilidades

Ejercicios de programación en ScikitLearn: Práctica y Certificación

Los ejercicios de programación son fundamentales para dominar ScikitLearn. Este ejercicio está diseñado para poner a prueba tus conocimientos prácticos y ayudarte a consolidar lo aprendido en las lecciones teóricas. La práctica constante con ejercicios de programación es la clave para convertirte en un desarrollador experto.

¿Por qué resolver ejercicios de programación?

Resolver ejercicios de programación en ScikitLearn te permite:

  • Aplicar conocimientos teóricos: Poner en práctica los conceptos aprendidos en las lecciones de ScikitLearn.
  • Identificar áreas de mejora: Descubrir qué conceptos necesitas reforzar en tu aprendizaje de ScikitLearn.
  • Prepararte para certificaciones: Los ejercicios te preparan para obtener certificados profesionales en ScikitLearn.
  • Mejorar tu perfil profesional: Demostrar tus habilidades prácticas en ScikitLearn.

Metodología de aprendizaje

Nuestros ejercicios de programación están diseñados siguiendo una metodología probada de aprendizaje progresivo. Cada ejercicio en ScikitLearn está cuidadosamente estructurado para llevar tus habilidades al siguiente nivel. Comenzamos con conceptos fundamentales y avanzamos gradualmente hacia desafíos más complejos que reflejan situaciones reales del desarrollo de software profesional.

Certificación y validación de conocimientos

Al completar ejercicios de programación, no solo mejoras tus habilidades técnicas, sino que también puedes obtener certificados que validan tu expertise en ScikitLearn. Estos certificados son reconocidos por empresas y pueden ser una gran adición a tu perfil profesional de LinkedIn o tu CV como desarrollador.

Los ejercicios están alineados con los estándares de la industria y cubren desde conceptos básicos hasta técnicas avanzadas de programación en ScikitLearn. Cada ejercicio incluye casos de prueba y ejemplos prácticos que te ayudarán a comprender mejor cómo aplicar lo aprendido en proyectos reales.

Nota: Para obtener el máximo beneficio de este ejercicio de programación, te recomendamos revisar primero las lecciones relacionadas de ScikitLearn y asegurarte de comprender los conceptos básicos antes de intentar resolver el ejercicio.