Ejercicio de programación: Clustering jerárquico
Este ejercicio de programación está diseñado para poner a prueba tus conocimientos en ScikitLearn. Es un ejercicio para expertos que requiere un dominio completo de la tecnología.
Información adicional del ejercicio
Ejercicio sobre clustering jerárquico aglomerativo en Scikit-Learn.
Contenido del ejercicio
Utilizando el dataset de iris proporcionado por sklearn.datasets, desarrolla un script que aplique clustering jerárquico aglomerativo sobre este conjunto de datos. El objetivo es agrupar las flores en distintos clústers sin utilizar etiquetas, empleando la clase AgglomerativeClustering de Scikit-Learn.
Carga de datos:
- Utiliza el método
load_irisde Scikit-Learn para cargar el dataset.
Preprocesamiento:
- Realiza el escalado de las características para mejorar la calidad de las medidas de distancia.
Clustering:
- Implementa el algoritmo de clustering aglomerativo con al menos dos métodos diferentes de enlace (
wardyaverage). - Deberás determinar el número óptimo de clústers utilizando el coeficiente de silueta para cada método de enlace probando con una cantidad de clústers entre 2 y 6.
Visualización:
- Grafica el coeficiente de silueta para cada método de enlace y cada número de clústers para comparar los resultados.
Interpretación:
- Basándote en el análisis del coeficiente de silueta, indica qué método de enlace y cuántos clústers representan mejor la segmentación del dataset de iris.
Lección relacionada
Este ejercicio está relacionado con la lección "Clustering jerárquico" de ScikitLearn. Te recomendamos revisar la lección antes de comenzar.
Ver lección relacionadaMás ejercicios de ScikitLearn
Explora más ejercicios de programación en ScikitLearn para mejorar tus habilidades y obtener tu certificación.
Ver más ejercicios de ScikitLearnExplora el curso completo de ScikitLearn
Descubre más contenido de ScikitLearn con lecciones, ejercicios y módulos organizados para tu aprendizaje.
Lecciones de ScikitLearn
Aprende los conceptos fundamentales con tutoriales detallados
Ejercicios de ScikitLearn
Practica con más ejercicios de programación
Módulos de ScikitLearn
Explora todos los módulos del curso organizados por temas
Curso completo de ScikitLearn
Ver el temario completo con todos los contenidos del curso
Todas las tecnologías
Explora todos los cursos de programación disponibles
Alan Sastre
Ingeniero de Software y formador, CEO en CertiDevs
Ingeniero de software especializado en Full Stack y en Inteligencia Artificial. Como CEO de CertiDevs, ScikitLearn es una de sus áreas de expertise. Con más de 15 años programando, 6K seguidores en LinkedIn y experiencia como formador, Alan se dedica a crear ejercicios prácticos y contenido educativo de calidad para desarrolladores de todos los niveles.
Solución al ejercicio de programación en ScikitLearn
¡Desbloquea la solución completa!
Completa el ejercicio de programación en ScikitLearn para acceder a la solución paso a paso, explicaciones detalladas y mejores prácticas.
Practica con ejercicios de programación en ScikitLearn
Mejora tus habilidades con cientos de ejercicios de práctica, recibe retroalimentación instantánea y obtén tu certificación cuando estés listo.
Asistente de IA
Aprende de tus errores
Progreso
Mide tu avance
Certificación
Valida tus habilidades
Ejercicios de programación en ScikitLearn: Práctica y Certificación
Los ejercicios de programación son fundamentales para dominar ScikitLearn. Este ejercicio está diseñado para poner a prueba tus conocimientos prácticos y ayudarte a consolidar lo aprendido en las lecciones teóricas. La práctica constante con ejercicios de programación es la clave para convertirte en un desarrollador experto.
¿Por qué resolver ejercicios de programación?
Resolver ejercicios de programación en ScikitLearn te permite:
- Aplicar conocimientos teóricos: Poner en práctica los conceptos aprendidos en las lecciones de ScikitLearn.
- Identificar áreas de mejora: Descubrir qué conceptos necesitas reforzar en tu aprendizaje de ScikitLearn.
- Prepararte para certificaciones: Los ejercicios te preparan para obtener certificados profesionales en ScikitLearn.
- Mejorar tu perfil profesional: Demostrar tus habilidades prácticas en ScikitLearn.
Metodología de aprendizaje
Nuestros ejercicios de programación están diseñados siguiendo una metodología probada de aprendizaje progresivo. Cada ejercicio en ScikitLearn está cuidadosamente estructurado para llevar tus habilidades al siguiente nivel. Comenzamos con conceptos fundamentales y avanzamos gradualmente hacia desafíos más complejos que reflejan situaciones reales del desarrollo de software profesional.
Certificación y validación de conocimientos
Al completar ejercicios de programación, no solo mejoras tus habilidades técnicas, sino que también puedes obtener certificados que validan tu expertise en ScikitLearn. Estos certificados son reconocidos por empresas y pueden ser una gran adición a tu perfil profesional de LinkedIn o tu CV como desarrollador.
Los ejercicios están alineados con los estándares de la industria y cubren desde conceptos básicos hasta técnicas avanzadas de programación en ScikitLearn. Cada ejercicio incluye casos de prueba y ejemplos prácticos que te ayudarán a comprender mejor cómo aplicar lo aprendido en proyectos reales.